Modifier loci condition autoimmunity provoked by Aire deficiency
نویسندگان
چکیده
Loss of function mutations in the autoimmune regulator (Aire) gene in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients and mutant mice lead to autoimmune manifestations that segregate as a monogenic trait, but with wide variation in the spectrum of organs targeted. To investigate the cause of this variability, the Aire knockout mutation was backcrossed to mice of diverse genetic backgrounds. The background loci strongly influenced the pattern of organs that were targeted (stomach, eye, pancreas, liver, ovary, thyroid, and salivary gland) and the severity of the targeting (particularly strong on the nonobese diabetic background, but very mild on the C57BL/6 background). Autoantibodies mimicked the disease pattern, with oligoclonal reactivity to a few antigens that varied between Aire-deficient strains. Congenic analysis and a whole genome scan showed that autoimmunity to each organ had a distinctive pattern of genetic control and identified several regions that controlled the pattern of targeting, including the major histocompatibility complex and regions of Chr1 and Chr3 previously identified in controlling type 1 diabetes.
منابع مشابه
Gene Dosage–limiting Role of Aire in Thymic Expression, Clonal Deletion, and Organ-specific Autoimmunity
Inactivation of the autoimmune regulator (Aire) gene causes a rare recessive disorder, autoimmune polyendocrine syndrome 1 (APS1), but it is not known if Aire-dependent tolerance mechanisms are susceptible to the quantitative genetic changes thought to underlie more common autoimmune diseases. In mice with a targeted mutation, complete loss of Aire abolished expression of an insulin promoter tr...
متن کاملDivergent effects of T cell costimulation and inflammatory cytokine production on autoimmune peripheral neuropathy provoked by Aire deficiency.
Chronic inflammatory demyelinating polyneuropathy results from autoimmune destruction of the peripheral nervous system and is a component of the multiorgan autoimmunity syndrome that results from Aire gene mutations in humans. In parallel, peripheral nervous system autoimmunity resembling chronic inflammatory demyelinating polyneuropathy develops spontaneously in NOD mice with a partial loss of...
متن کاملLYN- and AIRE-mediated tolerance checkpoint defects synergize to trigger organ-specific autoimmunity.
Studies of the genetic factors associated with human autoimmune disease suggest a multigenic origin of susceptibility; however, how these factors interact and through which tolerance pathways they operate generally remain to be defined. One key checkpoint occurs through the activity of the autoimmune regulator AIRE, which promotes central T cell tolerance. Recent reports have described a variet...
متن کاملIdentification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator
Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire(+) mTECs) is unclear. Here, we describe novel embryonic precursors of Aire(+) mTECs. We found the candidate precursors of Aire(+) mTECs (pMECs) by monitoring the expression of receptor activato...
متن کاملNeonatal tolerance revisited: a perinatal window for Aire control of autoimmunity
There has long been conceptual and experimental support for, but also challenges to, the notion that the initial period of the immune system's development is particularly important for the establishment of tolerance to self. The display of self-antigens by thymic epithelial cells is key to inducing tolerance in the T lymphocyte compartment, a process enhanced by the Aire transcription factor. U...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 202 شماره
صفحات -
تاریخ انتشار 2005